Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arsenate reductases in prokaryotes and eukaryotes.

Identifieur interne : 001002 ( Main/Exploration ); précédent : 001001; suivant : 001003

Arsenate reductases in prokaryotes and eukaryotes.

Auteurs : Rita Mukhopadhyay [États-Unis] ; Barry P. Rosen

Source :

RBID : pubmed:12426124

Descripteurs français

English descriptors

Abstract

The ubiquity of arsenic in the environment has led to the evolution of enzymes for arsenic detoxification. An initial step in arsenic metabolism is the enzymatic reduction of arsenate [As(V)] to arsenite [As(III)]. At least three families of arsenate reductase enzymes have arisen, apparently by convergent evolution. The properties of two of these are described here. The first is the prokaryotic ArsC arsenate reductase of Escherichia coli. The second, Acr2p of Saccharomyces cerevisiae, is the only identified eukaryotic arsenate reductase. Although unrelated to each other, both enzymes receive their reducing equivalents from glutaredoxin and reduced glutathione. The structure of the bacterial ArsC has been solved at 1.65 A. As predicted from its biochemical properties, ArsC structures with covalent enzyme-arsenic intermediates that include either As(V) or As(III) were observed. The yeast Acr2p has an active site motif HC(X)(5)R that is conserved in protein phosphotyrosine phosphatases and rhodanases, suggesting that these three groups of enzymes may have evolved from an ancestral oxyanion-binding protein.

DOI: 10.1289/ehp.02110s5745
PubMed: 12426124
PubMed Central: PMC1241237


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arsenate reductases in prokaryotes and eukaryotes.</title>
<author>
<name sortKey="Mukhopadhyay, Rita" sort="Mukhopadhyay, Rita" uniqKey="Mukhopadhyay R" first="Rita" last="Mukhopadhyay">Rita Mukhopadhyay</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA. rmukhopad@med.wayne.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rosen, Barry P" sort="Rosen, Barry P" uniqKey="Rosen B" first="Barry P" last="Rosen">Barry P. Rosen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12426124</idno>
<idno type="pmid">12426124</idno>
<idno type="pmc">PMC1241237</idno>
<idno type="doi">10.1289/ehp.02110s5745</idno>
<idno type="wicri:Area/Main/Corpus">000F60</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F60</idno>
<idno type="wicri:Area/Main/Curation">000F60</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F60</idno>
<idno type="wicri:Area/Main/Exploration">000F60</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arsenate reductases in prokaryotes and eukaryotes.</title>
<author>
<name sortKey="Mukhopadhyay, Rita" sort="Mukhopadhyay, Rita" uniqKey="Mukhopadhyay R" first="Rita" last="Mukhopadhyay">Rita Mukhopadhyay</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA. rmukhopad@med.wayne.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rosen, Barry P" sort="Rosen, Barry P" uniqKey="Rosen B" first="Barry P" last="Rosen">Barry P. Rosen</name>
</author>
</analytic>
<series>
<title level="j">Environmental health perspectives</title>
<idno type="ISSN">0091-6765</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenate Reductases (MeSH)</term>
<term>Arsenates (pharmacology)</term>
<term>Arsenic (metabolism)</term>
<term>Arsenite Transporting ATPases (MeSH)</term>
<term>Drug Resistance (MeSH)</term>
<term>Escherichia coli (enzymology)</term>
<term>Ion Pumps (pharmacology)</term>
<term>Multienzyme Complexes (pharmacology)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae Proteins (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arsenate Reductases (MeSH)</term>
<term>Arsenic (métabolisme)</term>
<term>Arsenite Transporting ATPases (MeSH)</term>
<term>Arséniates (pharmacologie)</term>
<term>Complexes multienzymatiques (pharmacologie)</term>
<term>Escherichia coli (enzymologie)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Pompes ioniques (pharmacologie)</term>
<term>Protéines de Saccharomyces cerevisiae (MeSH)</term>
<term>Résistance aux substances (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arsenic</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Arsenates</term>
<term>Ion Pumps</term>
<term>Multienzyme Complexes</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Arsenate Reductases</term>
<term>Arsenite Transporting ATPases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Escherichia coli</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Escherichia coli</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arsenic</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Arséniates</term>
<term>Complexes multienzymatiques</term>
<term>Pompes ioniques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Drug Resistance</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arsenate Reductases</term>
<term>Arsenite Transporting ATPases</term>
<term>Oxydoréduction</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Résistance aux substances</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ubiquity of arsenic in the environment has led to the evolution of enzymes for arsenic detoxification. An initial step in arsenic metabolism is the enzymatic reduction of arsenate [As(V)] to arsenite [As(III)]. At least three families of arsenate reductase enzymes have arisen, apparently by convergent evolution. The properties of two of these are described here. The first is the prokaryotic ArsC arsenate reductase of Escherichia coli. The second, Acr2p of Saccharomyces cerevisiae, is the only identified eukaryotic arsenate reductase. Although unrelated to each other, both enzymes receive their reducing equivalents from glutaredoxin and reduced glutathione. The structure of the bacterial ArsC has been solved at 1.65 A. As predicted from its biochemical properties, ArsC structures with covalent enzyme-arsenic intermediates that include either As(V) or As(III) were observed. The yeast Acr2p has an active site motif HC(X)(5)R that is conserved in protein phosphotyrosine phosphatases and rhodanases, suggesting that these three groups of enzymes may have evolved from an ancestral oxyanion-binding protein.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12426124</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>12</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0091-6765</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>110 Suppl 5</Volume>
<PubDate>
<Year>2002</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Environmental health perspectives</Title>
<ISOAbbreviation>Environ Health Perspect</ISOAbbreviation>
</Journal>
<ArticleTitle>Arsenate reductases in prokaryotes and eukaryotes.</ArticleTitle>
<Pagination>
<MedlinePgn>745-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The ubiquity of arsenic in the environment has led to the evolution of enzymes for arsenic detoxification. An initial step in arsenic metabolism is the enzymatic reduction of arsenate [As(V)] to arsenite [As(III)]. At least three families of arsenate reductase enzymes have arisen, apparently by convergent evolution. The properties of two of these are described here. The first is the prokaryotic ArsC arsenate reductase of Escherichia coli. The second, Acr2p of Saccharomyces cerevisiae, is the only identified eukaryotic arsenate reductase. Although unrelated to each other, both enzymes receive their reducing equivalents from glutaredoxin and reduced glutathione. The structure of the bacterial ArsC has been solved at 1.65 A. As predicted from its biochemical properties, ArsC structures with covalent enzyme-arsenic intermediates that include either As(V) or As(III) were observed. The yeast Acr2p has an active site motif HC(X)(5)R that is conserved in protein phosphotyrosine phosphatases and rhodanases, suggesting that these three groups of enzymes may have evolved from an ancestral oxyanion-binding protein.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mukhopadhyay</LastName>
<ForeName>Rita</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA. rmukhopad@med.wayne.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rosen</LastName>
<ForeName>Barry P</ForeName>
<Initials>BP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM 52216</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P42 ES 10344</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Environ Health Perspect</MedlineTA>
<NlmUniqueID>0330411</NlmUniqueID>
<ISSNLinking>0091-6765</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001149">Arsenates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016623">Ion Pumps</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009097">Multienzyme Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.20.-</RegistryNumber>
<NameOfSubstance UI="C506971">ARR2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.20.-</RegistryNumber>
<NameOfSubstance UI="D053502">Arsenate Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.3.16</RegistryNumber>
<NameOfSubstance UI="D053501">Arsenite Transporting ATPases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N712M78A8G</RegistryNumber>
<NameOfSubstance UI="D001151">Arsenic</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D053502" MajorTopicYN="N">Arsenate Reductases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001149" MajorTopicYN="N">Arsenates</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001151" MajorTopicYN="N">Arsenic</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053501" MajorTopicYN="N">Arsenite Transporting ATPases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004351" MajorTopicYN="N">Drug Resistance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016623" MajorTopicYN="N">Ion Pumps</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009097" MajorTopicYN="N">Multienzyme Complexes</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>12</Month>
<Day>27</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12426124</ArticleId>
<ArticleId IdType="pii">sc271_5_1835</ArticleId>
<ArticleId IdType="pmc">PMC1241237</ArticleId>
<ArticleId IdType="doi">10.1289/ehp.02110s5745</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Structure. 2001 Nov;9(11):1071-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11709171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5910-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7597052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Sep 29;31(38):9288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1390715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 1992 Jul;97:259-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1396465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Jun 14;33(23):7288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8003492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Jun 14;33(23):7294-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8003493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9813-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7937896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Oct 17;34(41):13472-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7577935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Jul;13(9):819-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9234670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 May 15;93(4):617-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9604936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Sep 11;282(1):195-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1998 Nov 1;168(1):127-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9812373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 1999 May;7(5):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10354596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 17;274(51):36039-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10593884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2000 Jan;13(1):26-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10649963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jul 14;275(28):21149-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 14;276(37):34738-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11461905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13577-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11698660</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Rosen, Barry P" sort="Rosen, Barry P" uniqKey="Rosen B" first="Barry P" last="Rosen">Barry P. Rosen</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Mukhopadhyay, Rita" sort="Mukhopadhyay, Rita" uniqKey="Mukhopadhyay R" first="Rita" last="Mukhopadhyay">Rita Mukhopadhyay</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001002 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001002 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12426124
   |texte=   Arsenate reductases in prokaryotes and eukaryotes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12426124" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020